Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115.722
Filtrar
1.
Exp Dermatol ; 33(3): e15027, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38514926

RESUMO

Hemangioma is a common benign tumour that usually occurs on the skin of the head and neck, particularly among infants. The current clinical treatment against hemangioma is surgery excision, however, application of drug is a safer and more economical therapy for children suffering from hemangioma. As a natural sulfated polysaccharide rich in brown algae, fucoidan is widely recognized for anti-tumour bioactivity and dosage safety in humans. This study aims to demonstrate the anti-tumour effect and underlying mechanism of fucoidan against hemangioma in vivo and in vitro. We investigated the effects of fucoidan by culturing hemangioma cells in vitro and treating BALB/c mice bearing with hemangioma. At first, we measured the cell proliferation and migration ability through in vitro experiments. Then, we tested the expression of epithelial-mesenchymal transition (EMT) and Wnt/ß-catenin pathway-related biomarkers by western blot and qPCR. Furthermore, we applied ß-catenin-specific inhibitor, XAV939, to determine whether fucoidan suppressed EMT via the Wnt/ß-catenin pathway in hemangioma cells. In vivo experiments, we applied oral gavage of fucoidan to treat EOMA-bearing mice, along with evaluating the safety and efficacy of fucoidan. We found that fucoidan remarkably inhibits the proliferation and EMT ability of hemangioma cells, which is dependent on the Wnt/ß-catenin pathway. These results suggest that fucoidan exhibits tumour inhibitory effect on aggressive hemangioma via regulating the Wnt/ß-catenin signalling pathway both in vitro and in vivo, providing a new potent drug candidate for treating hemangioma.


Assuntos
Hemangioma , Polissacarídeos , Via de Sinalização Wnt , beta Catenina , Animais , Criança , Humanos , Camundongos , beta Catenina/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Hemangioma/tratamento farmacológico , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , Via de Sinalização Wnt/efeitos dos fármacos
2.
Exp Clin Endocrinol Diabetes ; 132(3): 152-161, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38513652

RESUMO

BACKGROUND: Type 2 diabetes mellitus (T2DM) is a commonly observed complication associated with obesity. The effect of fibroblast growth factor 19 (FGF19), a promising therapeutic agent for metabolic disorders, on pancreatic ß cells in obesity-associated T2DM remains poorly understood. METHODS: Human pancreatic ß cells were cultured with high glucose (HG) and palmitic acid (PA), followed by treatment with FGF19. The cell proliferation, apoptosis, and insulin secretion were evaluated by CCK-8, qRT-PCR, ELISA, flow cytometry, and western blotting. The expression of the insulin receptor substrate (IRS)/glucose transporter (GLUT) pathway was evaluated. The interaction between FGF19 and IRS1 was predicted using the STRING database and verified by co-immunoprecipitation and immunofluorescence. The regulatory effects of the IRS1/GLUT4 pathway on human pancreatic ß cells were assessed by overexpressing IRS1 and silencing IRS1 and GLUT4. RESULTS: HG+PA treatment reduced the human pancreatic ß cell proliferation and insulin secretion and promoted cell apoptosis. However, FGF19 treatment restored these alterations and significantly increased the expressions of IRS1, GLUT1, and GLUT4 in the IRS/GLUT pathway. Furthermore, FGF19 and IRS1 were found to interact. IRS1 overexpression partially promoted the proliferation of pancreatic ß cells and insulin secretion through GLUT4. Additionally, the silencing of IRS1 or GLUT4 attenuated the therapeutic effects of FGF19. CONCLUSION: In conclusion, FGF19 partly promoted the proliferation and insulin secretion of human pancreatic ß cells and inhibited apoptosis by upregulating the IRS1/GLUT4 pathway. These findings establish a theoretical framework for the clinical utilization of FGF19 in the treatment of obesity-associated T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Fatores de Crescimento de Fibroblastos , Transportador de Glucose Tipo 1 , Proteínas Substratos do Receptor de Insulina , Secreção de Insulina , Células Secretoras de Insulina , Obesidade , Humanos , Proliferação de Células/efeitos dos fármacos , Diabetes Mellitus Tipo 2/complicações , Fatores de Crescimento de Fibroblastos/farmacologia , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina/fisiologia , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Obesidade/etiologia , Obesidade/terapia , Ácido Palmítico/metabolismo , Ácido Palmítico/farmacologia , Transportador de Glucose Tipo 1/metabolismo , Linhagem Celular Tumoral , Glucose/metabolismo , Glucose/farmacologia
3.
Chem Biol Drug Des ; 103(3): e14459, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38538058

RESUMO

Diosgenin, a natural steroidal sapogenin, has recently attracted a high amount of attention, as an effective anticancer agent in ovarian cancer. However, diosgenin mediated anticancer impacts are still not completely understood. Thus, the present study evaluated the effect of diosgenin on the proliferation, apoptosis, and metastasis of ovarian cancer cells. OVCAR-3 and SKOV-3 cells were treated with diosgenin, cellular viability was assessed by MTT assay and apoptosis was measured by ELISA and evaluated the protein expression levels of apoptotic markers through western blotting. Cell migration was examined by measuring the mRNA levels of genes involved in the cell invasion. The protein expression levels of main components of PI3K signaling were evaluated via western blotting. Diosgenin led to significant inhibition of cellular proliferation in a dose-dependent manner. It also induced apoptosis through upregulating pro-apoptotic markers and downregulating antiapoptotic mediators. In addition, OVCAR-3 cells exposure to diosgenin decreased cell migration and invasion. More importantly, diosgenin downregulated the expression levels of main proteins in PI3K signaling including PI3K, Akt, mTOR, and GSK3. Diosgenin inhibited the proliferation and migration of OVCAR-3 ovarian cancer cells and induced apoptosis, which may be mediated by targeting PI3K signaling.


Assuntos
Diosgenina , Neoplasias Ovarianas , PTEN Fosfo-Hidrolase , Feminino , Humanos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/efeitos dos fármacos , Diosgenina/farmacologia , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Quinase 3 da Glicogênio Sintase/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , PTEN Fosfo-Hidrolase/efeitos dos fármacos , PTEN Fosfo-Hidrolase/metabolismo , Regulação para Cima
4.
Chem Biol Drug Des ; 103(3): e14507, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38538070

RESUMO

Non-small cell lung cancer (NSCLC) is an aggressive and devastating cancer due to its metastasis induced by increased invasion. Lentinan is a polysaccharide exerting antitumor roles in multiple cancers, including lung cancer. However, the influence of lentinan on cell invasion in NSCLC remains unclear. Cell invasion was detected by transwell analysis. Matrix metallopeptidase 9 (MMP9) levels were measured through immunofluorescence staining. The markers arginase-1 (Arg-1), CD206 and interleukin (IL)-10 (IL-10) of M2 macrophages, Wnt3a, and ß-catenin levels were measured by western blot or enzyme linked immunosorbent assay. Lentinan did not affect cell viability and proliferation in NSCLC cells. Lentinan suppressed cell invasion and reduced the expression and secretion of MMP9. Lentinan attenuated also M2 polarization of tumor-associated macrophages. Moreover, lentinan mitigated the M2 macrophage conditioned medium-mediated cell invasion and MMP9 alterations in NSCLC cells. Lentinan inhibited the activation of the Wnt/ß-catenin signaling in NSCLC cells. The activated Wnt/ß-catenin pathway reversed the suppressive effects of lentinan on cell invasion and MMP9 level in NSCLC cells. In conclusion, lentinan reduces cell invasion in NSCLC cells by inhibiting the M2 polarization of tumor-associated macrophages and the Wnt/ß-catenin signaling.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Lentinano , Neoplasias Pulmonares , Humanos , beta Catenina/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Lentinano/farmacologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Metaloproteinase 9 da Matriz , Macrófagos Associados a Tumor/efeitos dos fármacos , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia
5.
Int. j. morphol ; 42(1): 127-136, feb. 2024. ilus
Artigo em Inglês | LILACS | ID: biblio-1528822

RESUMO

SUMMARY: The objective of this study was to investigate the therapeutic wound healing potential and molecular mechanisms of shikonin as small molecules in vitro. A mouse burn model was used to explore the potential therapeutic effect of shikonin; we traced proliferating cells in vivo to locate the active area of skin cell proliferation. Through the results of conventional pathological staining, we found that shikonin has a good effect on the treatment of burned skin and promoted the normal distribution of skin keratin at the damaged site. At the same time, shikonin also promoted the proliferation of skin cells at the damaged site; importantly, we found a significant increase in the number of fibroblasts at the damaged site treated with shikonin. Most importantly, shikonin promotes fibroblasts to repair skin wounds by regulating the PI3K/AKT signaling pathway. This study shows that shikonin can effectively promote the proliferation of skin cell, and local injection of fibroblasts in burned skin can play a certain therapeutic role.


El objetivo de este trabajo fue investigar el potencial terapéutico de cicatrización de heridas y los mecanismos moleculares de la shikonina como moléculas pequeñas in vitro. Se utilizó un modelo de quemaduras en ratones para explorar el posible efecto terapéutico de la shikonina; Rastreamos las células en proliferación in vivo para localizar el área activa de proliferación de células de la piel. A través de los resultados de la tinción para patología convencional, encontramos que la shikonina tiene un buen efecto en el tratamiento de la piel quemada y promueve la distribución normal de la queratina de la piel en el sitio dañado. Al mismo tiempo, la shikonina también promovió la proliferación de células de la piel en el sitio dañado. Es importante destacar que encontramos un aumento significativo en la cantidad de fibroblastos en el sitio dañado tratado con shikonina. Lo más importante es que la shikonina promueve la función reparadora de fibroblastos en las heridas de la piel regulando la vía de señalización PI3K/ AKT. Este estudio muestra que la shikonina puede promover eficazmente la proliferación de células de la piel y que la inyección local de fibroblastos en la piel quemada puede desempeñar un cierto papel terapéutico.


Assuntos
Animais , Camundongos , Cicatrização/efeitos dos fármacos , Queimaduras/tratamento farmacológico , Naftoquinonas/administração & dosagem , Pele , Técnicas In Vitro , Naftoquinonas/farmacologia , Fosfatidilinositol 3-Quinases , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Proteínas Proto-Oncogênicas c-akt , Fibroblastos , Camundongos Endogâmicos C57BL
6.
Biochem Pharmacol ; 219: 115960, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38049008

RESUMO

Prostate cancer is the most common malignant tumor among men worldwide. Currently, the main treatments are radical prostatectomy, radiotherapy, chemotherapy, and endocrine therapy. However, most of them are poorly effective and induce side effects. Polo-like kinase 1 (PLK1) regulates cell cycle and mitosis. Its inhibitor BI2536 promotes the therapeutic effect of nilotinib in chronic myeloid leukemia, enhances the sensitivity of neural tube cell tumors to radiation therapy and PLK1 silencing enhances the sensitivity of squamous cell carcinoma to cisplatin. Therefore, the aim of this study was to evaluate the effect of the PLK1 inhibitor L-shaped ortho-quinone analog TE6 on prostate cancer. In vitro on prostate cancer cells showed that TE6 inhibited PLK1 protein expression and consequently cell proliferation by blocking the cell cycle at G2 phase. In vivo on a subcutaneous tumor model in nude mice confirmed that TE6 effectively inhibited tumor growth in nude mice, inhibited PLK1 expression and regulated the expression of cell cycle proteins such as p21, p53, CDK1, Cdc25C, and cyclinB1. Thus, PLK1 was identified as the target protein of TE6, these results reveal the critical role of PLK1 in the growth and survival of prostate cancer and point out the ability of TE6 on targeting PLK1, being a potential drug for prostate cancer therapy.


Assuntos
Fase G2 , Neoplasias da Próstata , Quinonas , /antagonistas & inibidores , Quinonas/química , Quinonas/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Fase G2/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Xenoenxertos , Humanos , Animais , Camundongos , Masculino , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Linhagem Celular Tumoral , Estrutura Molecular
7.
Biochem Pharmacol ; 219: 115939, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38000560

RESUMO

Carfilzomib, a second-generation proteasome inhibitor, has been approved as a treatment for relapsed and/or refractory multiple myeloma. Nevertheless, the molecular mechanism by which Carfilzomib inhibits esophageal squamous cell carcinoma (ESCC) progression largely remains to be determined. In the present study, we found that Carfilzomib demonstrated potent anti-tumor activity against esophageal squamous cell carcinoma both in vitro and in vivo. Mechanistically, carfilzomib triggers mitochondrial apoptosis and reprograms cellular metabolism in ESCC cells. Moreover, it has been identified that activating transcription factor 3 (ATF3) plays a crucial cellular target role in ESCC cells treated with Carfilzomib. Overexpression of ATF3 effectively antagonized the effects of carfilzomib on ESCC cell proliferation, apoptosis, and metabolic reprogramming. Furthermore, the ATF3 protein is specifically bound to lactate dehydrogenase A (LDHA) to effectively suppress LDHA-mediated metabolic reprogramming in response to carfilzomib treatment. Research conducted in xenograft models demonstrates that ATF3 mediates the anti-tumor activity of Carfilzomib. The examination of human esophageal squamous cell carcinoma indicated that ATF3 and LDHA have the potential to function as innovative targets for therapeutic intervention in the treatment of ESCC. Our findings demonstrate the novel function of Carfilzomib in modulating ESCC metabolism and progression, highlighting the potential of Carfilzomib as a promising therapeutic agent for the treatment of ESCC.


Assuntos
Fator 3 Ativador da Transcrição , Antineoplásicos , Carcinoma de Células Escamosas , Neoplasias Esofágicas , Oligopeptídeos , Neoplasias Esofágicas/tratamento farmacológico , Carcinoma de Células Escamosas/tratamento farmacológico , Oligopeptídeos/farmacologia , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Xenoenxertos , Transplante de Neoplasias , Humanos , Animais , Camundongos , Camundongos Endogâmicos BALB C , Proliferação de Células/efeitos dos fármacos , Carcinogênese/efeitos dos fármacos , Apoptose , Fator 3 Ativador da Transcrição/metabolismo
8.
J Biol Chem ; 300(1): 105492, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000655

RESUMO

Homozygous 5'-methylthioadenosine phosphorylase (MTAP) deletions occur in approximately 15% of human cancers. Co-deletion of MTAP and methionine adenosyltransferase 2 alpha (MAT2a) induces a synthetic lethal phenotype involving protein arginine methyltransferase 5 (PRMT5) inhibition. MAT2a inhibitors are now in clinical trials for genotypic MTAP-/- cancers, however the MTAP-/- genotype represents fewer than 2% of human colorectal cancers (CRCs), limiting the utility of MAT2a inhibitors in these and other MTAP+/+ cancers. Methylthio-DADMe-immucillin-A (MTDIA) is a picomolar transition state analog inhibitor of MTAP that renders cells enzymatically MTAP-deficient to induce the MTAP-/- phenotype. Here, we demonstrate that MTDIA and MAT2a inhibitor AG-270 combination therapy mimics synthetic lethality in MTAP+/+ CRC cell lines with similar effects in mouse xenografts and without adverse histology on normal tissues. Combination treatment is synergistic with a 104-fold increase in drug potency for inhibition of CRC cell growth in culture. Combined MTDIA and AG-270 decreases S-adenosyl-L-methionine and increases 5'-methylthioadenosine in cells. The increased intracellular methylthioadenosine:S-adenosyl-L-methionine ratio inhibits PRMT5 activity, leading to cellular arrest and apoptotic cell death by causing MDM4 alternative splicing and p53 activation. Combination MTDIA and AG-270 treatment differs from direct inhibition of PRMT5 by GSK3326595 by avoiding toxicity caused by cell death in the normal gut epithelium induced by the PRMT5 inhibitor. The combination of MTAP and MAT2a inhibitors expands this synthetic lethal approach to include MTAP+/+ cancers, especially the remaining 98% of CRCs without the MTAP-/- genotype.


Assuntos
Desoxiadenosinas , Metionina Adenosiltransferase , Neoplasias , Proteína-Arginina N-Metiltransferases , Purina-Núcleosídeo Fosforilase , S-Adenosilmetionina , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desoxiadenosinas/antagonistas & inibidores , Desoxiadenosinas/genética , Desoxiadenosinas/metabolismo , Sinergismo Farmacológico , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Metionina Adenosiltransferase/antagonistas & inibidores , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , Neoplasias/genética , Neoplasias/fisiopatologia , Neoplasias/terapia , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Purina-Núcleosídeo Fosforilase/genética , Purina-Núcleosídeo Fosforilase/metabolismo , Pirrolidinas/farmacologia , Pirrolidinas/uso terapêutico , S-Adenosilmetionina/metabolismo
9.
Biochim Biophys Acta Gen Subj ; 1868(2): 130535, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38103757

RESUMO

BACKGROUND: Calcimycin (A23187) is a polyether antibiotic and divalent cation ionophore, extracted from Streptomyces chartrecensis. With wide variety of antimicrobial activities, it also exhibits cytotoxicity of tumor cells. Calcimycin exhibit therapeutic potential against tumor cell growth; however, the molecular mechanism remains to be fully elucidated. Present study explores the mechanism of calcimycin-induced apoptosis cancer cell lines. METHODS: Apoptotic induction in a dose-dependent manner were recorded with MTT assays, Phase contrast imaging, wound healing assay, fluorescence imaging by DAPI and AO/EB staining and FACS using cell line model. Mitochondrial potential was analyzed by TMRM assay as Ca2+ signaling is well known to be influenced and synchronized by mitochondria also. RESULTS: Calcimycin induces apoptosis in dose dependent manner, also accompanied by increased intracellular calcium-level and expression of purinergic receptor-P2RX4, a ligand-gated ion channel. CONCLUSION: Calcimycin tends to increase the intracellular calcium level, mRNA expression of ATP receptor P2RX4, and phosphorylation of p38. Blocking of either intracellular calcium by BAPTA-AM, P2RX4 expression by antagonist 5-BDBD, and phospho-p38 by SB203580, abrogated the apoptotic activity of calcimycin. GENERAL SIGNIFICANCE: Taken together, these results show that calcimycin induces apoptosis in P2RX4 and ATP mediated intracellular Ca2+ and p38 MAPK mediated pathway in both the cancer cell lines. This study explored a new mode of action for calcimycin in cancer that could be potentially employed in future studies for cancer therapeutic research. This study disentangles that the calcimycin-induced apoptotic cell death is P2RX4 and ATP involved, intracellular Ca2+ and p38 MAPK mediated pathway.


Assuntos
Apoptose , Calcimicina , Cálcio , Receptores Purinérgicos P2X4 , Células MCF-7 , Linhagem Celular Tumoral , Humanos , Calcimicina/farmacologia , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Receptores Purinérgicos P2X4/metabolismo , Espaço Intracelular/metabolismo , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
10.
Chin J Physiol ; 66(6): 456-465, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38149558

RESUMO

Recently, evidence has shown that microRNA-100-3p (miR-100-3p) has been revealed as a tumor suppressor in diverse human diseases, while its capability in lung cancer warrants further validation. In this work, we aimed to discuss the impact of sevoflurane on biological functions of lung cancer cells by modulating the miR-100-3p/sterol O-acyltransferase 1 (SOAT1) axis. Lung cancer cell lines (A549 and H460) were treated with various concentrations of sevoflurane. Cell viability, proliferation, migration, and invasion were evaluated using MTT, colony formation, wound healing, and transwell assays. Moreover, miR-100-3p and SOAT1 expressions were evaluated by reverse transcription-quantitative polymerase chain reaction in lung cancer cells. The target interaction between miR-100-3p and SOAT1 was predicted by bioinformatics analysis and verified by the dual-luciferase reporter gene assay. The findings of our work demonstrated that sevoflurane impeded the abilities on viability, proliferation, migration, and invasion of A549 and H460 cells. The expression of miR-100-3p was reduced, and SOAT1 expression was elevated in lung cancer cells. miR-100-3p targeted SOAT1. Besides, sevoflurane could lead to expressed improvement of miR-100-3p or limitation of SOAT1. Downregulation of miR-100-3p or upregulation of SOAT1 restored the suppression of sevoflurane on abilities of viability, proliferation, migration, and invasion in A549 and H460 cells. In the rescue experiment, downregulation of SOAT1 reversed the impacts of downregulation of miR-100-3p on sevoflurane on lung cancer cells. Collectively, our study provides evidence that sevoflurane restrained the proliferation and invasion in lung cancer cells by modulating the miR-100-3p/SOAT1 axis. This article provides a new idea for further study of the pathogenesis of lung cancer.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Sevoflurano , Sevoflurano/farmacologia , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , MicroRNAs/metabolismo , Esterol O-Aciltransferase/metabolismo , Linhagem Celular Tumoral , Células A549 , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Antineoplásicos/farmacologia , Transdução de Sinais
12.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(5): 1394-1402, 2023 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-37846690

RESUMO

OBJECTIVE: To analyze the effects of mangiferin combined with bortezomib on the proliferation, invasion, apoptosis and autophagy of human Burkitt lymphoma Raji cells, as well as the expression of CXC chemokine receptors (CXCRs) family, and explore the molecular mechanism between them to provide scientific basis for basic research and clinical work of Burkitt lymphoma. METHODS: Raji cells were intervened with different concentrations of mangiferin and bortezomib alone or in combination, then cell proliferation was detected by CCK-8 assay, cell invasion ability was detected by Transwell chamber method, cell apoptosis was detected by Annexin V/PI double-staining flow cytometry, apoptosis, autophagy and Akt/mTOR pathway protein expression were detected by Western blot, and the expression changes of CXCR family was detected by real-time quantitative PCR (RT-qPCR). RESULTS: Different concentrations of mangiferin intervened Raji cells for different time could inhibit cell viability in a concentration- and time-dependent manner (r =-0.682, r =-0.836). When Raji cells were intervened by combination of mangiferin and bortezomib, compared with single drug group, the proliferation and invasion abilities were significantly decreased, while the apoptosis level was significantly increased (P <0.01). Mangiferin combined with bortezomib could significantly up-regulate the expression of pro-apoptotic protein Bax and down-regulate the expression of anti-apoptotic protein Bcl-2 after intervention in Raji cells. Caspase-3 was also hydrolyzed and activated, and then induced the apoptosis of Raji cells. Mangiferin combined with bortezomib could up-regulate the expression of LC3Ⅱ protein in Raji cells, and the ratio of LC3Ⅱ/LC3Ⅰ in cells was significantly up-regulated compared with single drug or control group (P <0.01). Mangiferin combined with bortezomib could significantly inhibit the phosphorylation levels of Akt and mTOR, inhibit the proliferation and invasion of Raji cells by inhibiting Akt/mTOR pathway, and induce cell autophagy and apoptosis. Mangiferin and bortezomib could down-regulate the expressions of CXCR4 and CXCR7 mRNA after single-agent intervention in Raji cells, and the down-regulations of CXCR4 and CXCR7 mRNA expression were more significant when the two drugs were combined (P <0.01). Mangiferin alone or combined with bortezomib had no significant effect on CXCR5 mRNA expression in Raji cells (P >0.05), while the combination of the two drugs could down-regulate the expression of CXCR3 (P <0.05). CONCLUSION: Mangiferin combined with bortezomib can synergistically inhibit the proliferation and invasion of Raji cells, and induce autophagy and apoptosis. The mechanism may be related to the inhibition of Akt/mTOR signaling pathway, down-regulation of anti-apoptotic protein Bcl-2 and up-regulation of pro-apoptotic protein Bax, and the inhibition of the expression of CXCR family.


Assuntos
Antineoplásicos , Bortezomib , Linfoma de Burkitt , Receptores CXCR , Xantonas , Humanos , Antineoplásicos/imunologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/biossíntese , Proteínas Reguladoras de Apoptose/imunologia , Autofagia/efeitos dos fármacos , Autofagia/imunologia , Proteína X Associada a bcl-2/biossíntese , Proteína X Associada a bcl-2/imunologia , Bortezomib/imunologia , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Linfoma de Burkitt/tratamento farmacológico , Linfoma de Burkitt/imunologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quimioterapia Combinada , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-bcl-2 , Receptores CXCR/biossíntese , Receptores CXCR/imunologia , RNA Mensageiro , Serina-Treonina Quinases TOR , Xantonas/imunologia , Xantonas/farmacologia , Xantonas/uso terapêutico
13.
BMC Urol ; 23(1): 170, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875863

RESUMO

OBJECTIVE: Sakura extract is a natural flavonoid compound that may have potential anti-tumor effects. The paper focuses on investigating Sakuranin mechanism on bladder cancer (BC) cells. METHODS: BC cells (T24) were treated with different concentrations of Sakuranin, with 48-h IC50 determined. T24 cells were treated with Sakuranin at IC50, followed by assessment of cell proliferative/apoptotic/migrative/invasive activities by CCK-8, EdU and plate clone formation assays/flow cytometry/Transwell/scratch test. MMP-2 (migration and invasion-related protein) protein level was assessed by Western blot. Cell autophagy was evaluated by measuring the protein levels of autophagy markers (LC3-I/LC3-II/p62) through Western blot. The autophagy inhibitor 3-MA was used to validate the role of autophagy in the regulatory mechanism of Sakuranin in T24 cell behaviors. Furthermore, the activation of the p53/mTOR pathway in cells was detected and a combination of Sakuranin and p53 inhibitor Pifithrin-µ was adopted to explore the involvement of this pathway. RESULTS: Sakuranin decreased T24 cell proliferation/EdU positive cell percentage/colony formation number and area/migration/invasion/scratch healing/MMP-2 protein level, and accelerated apoptosis. Sakuranin elevated the LC3-II/I ratio and lowered p62 level in T24 cells. 3-MA partially averted Sakuranin-mediated repression on cell malignant behaviors. Sakuranin upregulated p-p53 and p53 levels, and decreased the p-mTOR/mTOR ratio in T24 cells. The effects of Sakuranin on cell biological behaviors were partly annulled by Pifithrin-µ treatment. CONCLUSION: Sakuranin suppressed T24 cell proliferation/migration/invasion, and enhanced apoptosis by potentiating autophagy through activating the p53/mTOR pathway. This study provided a theoretical basis for Sakuranin as a potential drug for clinical treatment of BC.


Assuntos
Extratos Vegetais , Proteína Supressora de Tumor p53 , Neoplasias da Bexiga Urinária , Humanos , Apoptose , Autofagia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Metaloproteinase 2 da Matriz/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Extratos Vegetais/farmacologia
14.
Int. j. morphol ; 41(5): 1348-1356, oct. 2023.
Artigo em Inglês | LILACS | ID: biblio-1521029

RESUMO

SUMMARY: Aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is highly expressed in various types of cancers including breast cancer. However, the role of AhR with its endogenous ligand 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) on the progression of breast cancer remains poorly understood. We aimed to investigate cell proliferation and migration states in breast cancer after activating AhR with the endogenous ligand ITE. Breast cancer tissue was evaluated by cell lines, immunohistochemistry, reverse transcription-polymerase chain reaction, cell proliferation, flow cytometry, migration assays and western blot techniques. We found that AhR was widely expressed in breast cancer tissues and metastasis lymph node tissues, but not in normal tissues. The expression AhR was independent between the age, grades and TNM classifications for breast cancer tissues. ITE treatment significantly induced the activation of AhR in a time-dependent manner in both MCF-7 and T47D breast cancer cell lines. Meanwhile, ITE did not affect the cell migration but significantly suppressed the cell proliferation in estrogen receptor positive (ER+) MCF-7 andT47D cells, which probably attribute to the induction of cell cycle arrest in G1 phase and shortened S phase. Further mechanism study showed that ERK1/2 and AKT signaling were required for the activation of AhR in MCF-7 cells. These data suggest that AhR is a potential new target for treating patients with breast cancer. ITE may be more potentially used for therapeutic intervention for breast cancer with the kind of ER(+).


El receptor de hidrocarburo de arilo (AhR) es un factor de transcripción activado por ligando que se expresa en gran medida en varios tipos de cáncer, incluido el cáncer de mama. Sin embargo, el papel de AhR con su ligando endógeno 2- (1'H-indol-3'-carbonil)-tiazol-4-ácido carboxílico metil éster (ITE) en la progresión del cáncer de mama sigue siendo poco conocido. Nuestro objetivo fue investigar la proliferación celular y los estados de migración en el cáncer de mama después de activar AhR con el ligando endógeno ITE. El tejido de cáncer de mama se evaluó mediante líneas celulares, inmunohistoquímica, reacción en cadena de la polimerasa con transcriptasa inversa, proliferación celular, citometría de flujo, ensayos de migración y técnicas de transferencia Western. Descubrimos que AhR se expresó ampliamente en tejidos de cáncer de mama y en linfonodos con metástasis, pero no en tejidos normales. La expresión AhR fue independiente entre la edad, grados y clasificaciones TNM para tejidos de cáncer de mama. El tratamiento con ITE indujo significativamente la activación de AhR de manera dependiente del tiempo en las líneas celulares de cancer de mama MCF-7 y T47D. Mientras tanto, ITE no afectó la migración celular, pero suprimió significativamente la proliferación celular en células MCF-7 y T47D con receptor de estrógeno positivo (ER+), lo que probablemente se atribuye a la inducción de la detención del ciclo celular en la fase G1 y la fase S acortada. Un estudio adicional del mecanismo mostró que las señales de ERK1/2 y AKT eran necesarias para la activación de AhR en las células MCF-7. Estos datos sugieren que AhR es un nuevo objetivo potencial para el tratamiento de pacientes con cáncer de mama. ITE puede ser utilizado más potencialmente en la intervención terapéutica para el cáncer de mama con el tipo de ER (+).


Assuntos
Humanos , Feminino , Tiazóis/administração & dosagem , Neoplasias da Mama/patologia , Receptores de Hidrocarboneto Arílico/efeitos dos fármacos , Indóis/administração & dosagem , Tiazóis/farmacologia , Imuno-Histoquímica , Receptores de Estrogênio , Western Blotting , Citocromo P-450 CYP1A1/genética , Linhagem Celular Tumoral/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ensaios de Migração Celular , Citocromo P-450 CYP1B1/genética , Citometria de Fluxo , Indóis/farmacologia
15.
Mol Biol Rep ; 50(9): 7667-7680, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37418080

RESUMO

Antiepileptic drugs are versatile drugs with the potential to be used in functional drug formulations with drug repurposing approaches. In the present review, we investigated the anticancer properties of antiepileptic drugs and interlinked cancer and epileptic pathways. Our focus was primarily on those drugs that have entered clinical trials with positive results and those that provided good results in preclinical studies. Many contributing factors make cancer therapy fail, like drug resistance, tumor heterogeneity, and cost; exploring all alternatives for efficient treatment is important. It is crucial to find new drug targets to find out new antitumor molecules from the already clinically validated and approved drugs utilizing drug repurposing methods. The advancements in genomics, proteomics, and other computational approaches speed up drug repurposing. This review summarizes the potential of antiepileptic drugs in different cancers and tumor progression in the brain. Valproic acid, oxcarbazepine, lacosamide, lamotrigine, and levetiracetam are the drugs that showed potential beneficial outcomes against different cancers. Antiepileptic drugs might be a good option for adjuvant cancer therapy, but there is a need to investigate further their efficacy in cancer therapy clinical trials.


Assuntos
Anticonvulsivantes , Neoplasias , Neoplasias/tratamento farmacológico , Humanos , Anticonvulsivantes/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais , Animais
16.
Biomed Pharmacother ; 165: 115107, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37423171

RESUMO

The antitumor effects of traditional drugs have received increasing attention and active antitumor components extracted from traditional drugs have shown good efficacy with minimal adverse events. Cepharanthine(CEP for short) is an active component derived from the Stephania plants of Menispermaceae, which can regulate multiple signaling pathways alone or in combination with other therapeutic drugs to inhibit tumor cell proliferation, induce apoptosis, regulate autophagy, and inhibit angiogenesis, thereby inhibiting tumor progression. Therefore, we retrieved studies concerning CEP's antitumor effects in recent years and summarized the antitumor mechanism and targets, in order to gain new insights and establish a theoretical basis for further development and application of CEP.


Assuntos
Antineoplásicos , Benzodioxóis , Benzilisoquinolinas , Benzilisoquinolinas/química , Benzilisoquinolinas/farmacologia , Benzodioxóis/química , Benzodioxóis/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Humanos , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Tolerância a Radiação/efeitos dos fármacos , Autofagia/efeitos dos fármacos , /efeitos dos fármacos
17.
J Biol Chem ; 299(9): 105090, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37507016

RESUMO

Folate-mediated one-carbon metabolism (FOCM) is crucial in sustaining rapid proliferation and survival of cancer cells. The folate cycle depends on a series of key cellular enzymes, including aldehyde dehydrogenase 1 family member L2 (ALDH1L2) that is usually overexpressed in cancer cells, but the regulatory mechanism of ALDH1L2 remains undefined. In this study, we observed the significant overexpression of ALDH1L2 in colorectal cancer (CRC) tissues, which is associated with poor prognosis. Mechanistically, we identified that the acetylation of ALDH1L2 at the K70 site is an important regulatory mechanism inhibiting the enzymatic activity of ALDH1L2 and disturbing cellular redox balance. Moreover, we revealed that sirtuins 3 (SIRT3) directly binds and deacetylates ALDH1L2 to increase its activity. Interestingly, the chemotherapeutic agent 5-fluorouracil (5-Fu) inhibits the expression of SIRT3 and increases the acetylation levels of ALDH1L2 in colorectal cancer cells. 5-Fu-induced ALDH1L2 acetylation sufficiently inhibits its enzymatic activity and the production of NADPH and GSH, thereby leading to oxidative stress-induced apoptosis and suppressing tumor growth in mice. Furthermore, the K70Q mutant of ALDH1L2 sensitizes cancer cells to 5-Fu both in vitro and in vivo through perturbing cellular redox and serine metabolism. Our findings reveal an unknown 5-Fu-SIRT3-ALDH1L2 axis regulating redox homeostasis, and suggest that targeting ALDH1L2 is a promising therapeutic strategy to sensitize tumor cells to chemotherapeutic agents.


Assuntos
Neoplasias Colorretais , Resistencia a Medicamentos Antineoplásicos , Fluoruracila , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Animais , Camundongos , Acetilação , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Ácido Fólico/metabolismo , Oxirredução , Sirtuína 3/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação para Cima , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Mutação
18.
Cell Cycle ; 22(12): 1463-1477, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37272203

RESUMO

BACKGROUND: The incidence of gastric cancer (GC) ranks fourth among all malignant tumors worldwide, and the fatality rate ranks second among all malignant tumors. Several Chinese traditional medicines have been used in the treatment of advanced gastric cancer. This study aims to investigate the effect of combinational use of natural product cryptotanshinone (CTS) with anti-cancer drug trifluorothymidine (FTD) in GC. METHODS: Cell Counting Kit-8 assay was used to detect the inhibitory effect of the combinational or separate use of FTD and CTS on the growth of HGC-27 and AGS GC cells. The combined index of FTD and CTS was calculated using CompuSyn software. To understand the mechanism, we applied flow cytometry to study the cell cycle and cell apoptosis after treatment. We also investigated the amount of FTD incorporated into the DNA by immunofluorescence assay. The expression of relevant proteins was monitored using western blot. Furthermore, the effect of using TAS-102 in combination with CTS was studied in xenograft tumor nude mice model. RESULTS: FTD and CTS inhibited the growth of GC cells in a dose-dependent manner, respectively. They both exhibited low to sub-micromolar potency in HGC-27 and AGS cells. The combination of FTD and CTS showed synergistic anticancer effect in HGC-27 cells and AGS cells. Our mechanism studies indicate that FTD could block HGC-27 cells at G2/M phase, while CTS could block HGC-27 cells at G1/G0 phase, while FTD combined with CTS could mainly block HGC-27 cells at G2 phase. FTD in combination with CTS significantly increased the apoptosis of HGC-27 cells. We observed that CTS treatment increased the incorporation of FTD into the DNA HGC-27 cell. FTD treatment activated STAT3 phosphorylation in HGC-27 cells, while CTS treatment down-regulated the concentration of p-STAT3. Interestingly, the combination of CTS and FTD reduced STAT3 phosphorylation induced by FTD. In the in vivo experiments, we observed that the combination of TAS-102 with CTS was significantly more potent than TAS-102 on tumor growth inhibition. CONCLUSIONS: FTD combined with CTS has a synergistic anti-gastric cancer effect as shown by in vitro and in vivo experiments, and the combined treatment of FTD and CTS will be a promising treatment option for advanced gastric cancer.


Assuntos
Fenantrenos , Neoplasias Gástricas , Trifluridina , Humanos , Linhagem Celular Tumoral , Animais , Camundongos , Xenoenxertos , Transplante de Neoplasias , Trifluridina/administração & dosagem , Trifluridina/farmacologia , Fenantrenos/administração & dosagem , Fenantrenos/farmacologia , Proliferação de Células/efeitos dos fármacos , Camundongos Nus , Sinergismo Farmacológico , Apoptose/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Neoplasias Gástricas/tratamento farmacológico
19.
Clin Cancer Res ; 29(14): 2570-2572, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37265411

RESUMO

Therapeutic antibodies selectively targeting EPHA2 with or without co-targeting another receptor tyrosine kinase have been limited to date. By integrating state-of-art proteogenomic, ex vivo models, and short hairpin RNA screening approaches, a new designing strategy has now discovered a bispecific therapeutic antibody co-targeting EPHA2 and EGFR - which effectively inhibits tumor cell growth in various preclinical cancer models. This new antibody provides new tools to impair the acquired resistance to EGFR-directed therapies or co-target EPHA2 and EGFR in human tumor. See related article by El Zawily et al., p. 2686.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Humanos , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Anticorpos Biespecíficos/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/imunologia , Proliferação de Células/efeitos dos fármacos , Receptores Proteína Tirosina Quinases
20.
Zhongguo Zhong Yao Za Zhi ; 48(9): 2522-2529, 2023 May.
Artigo em Chinês | MEDLINE | ID: mdl-37282881

RESUMO

This study aimed to investigate the effects of Erxian Decoction(EXD)-containing serum on the proliferation and osteogenic differentiation of MC3T3-E1 cells under oxidative stress through BK channels. The oxidative stress model was induced in MC3T3-E1 cells by H_2O_2, and 3 mmol·L~(-1) tetraethylammonium(TEA) chloride was used to block the BK channels in MC3T3-E1 cells. MC3T3-E1 cells were divided into a control group, a model group, an EXD group, a TEA group, and a TEA+EXD group. After MC3T3-E1 cells were treated with corresponding drugs for 2 days, 700 µmol·L~(-1) H_2O_2 was added for treatment for another 2 hours. CCK-8 assay was used to detect cell proliferation activity. The alkaline phosphatase(ALP) assay kit was used to detect the ALP activity of cells. Western blot and real-time fluorescence-based quantitative PCR(RT-qPCR) were used to detect protein and mRNA expression, respectively. Alizarin red staining was used to detect the mineralization area of osteoblasts. The results showed that compared with the control group, the model group showed significantly blunted cell proliferation activity and ALP activity, reduced expression of BK channel α subunit(BKα), collagen Ⅰ(COL1), bone morphogenetic protein 2(BMP2), osteoprotegerin(OPG), and phosphorylated Akt, decreased mRNA expression levels of Runt-related transcription factor 2(RUNX2), BMP2, and OPG, and declining area of calcium nodules. EXD-containing serum could significantly potentiate the cell proliferation activity and ALP activity, up-regulate the protein expression of BKα, COL1, BMP2, OPG, and phosphorylated Akt, and forkhead box protein O1(FoxO1), promote the mRNA expression of RUNX2, BMP2, and OPG, and enlarge the area of calcium nodules. However, BK channel blockage by TEA reversed the effects of EXD-containing serum in promoting the protein expression of BKα, COL1, BMP2, OPG, and phosphorylated Akt and FoxO1, increasing the mRNA expression of RUNX2, BMP2, and OPG, and enlarging the area of calcium nodules. EXD-containing serum could improve the proliferation activity, osteogenic differentiation, and mineralization ability of MC3T3-E1 cells under oxidative stress, which might be related to the regulation of BK channels and downstream Akt/FoxO1 signaling pathway.


Assuntos
Diferenciação Celular , Subunidade alfa 1 de Fator de Ligação ao Core , Canais de Potássio Ativados por Cálcio de Condutância Alta , Osteogênese , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Osteogênese/efeitos dos fármacos , RNA Mensageiro/genética , Medicamentos de Ervas Chinesas/farmacologia , Expressão Gênica/efeitos dos fármacos , Animais , Camundongos , Linhagem Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...